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POLYNOMIAL FACTORIZATION OVER F2 

JOACHIM VON ZUR GATHEN AND JURGEN GERHARD 

ABSTRACT. We describe algorithms for polynomial factorization over the bi- 

nary field F2, and their implementation. They allow polynomials of degree up 
to 250 000 to be factored in about one day of CPU time, distributing the work 
on two processors. 

1. INTRODUCTION 

The problem of polynomial factorization over the binary field F2 is, given a 
polynomial f E F2[x], to compute the factorization f f= l .. fe, with irreducible 
pairwise distinct polynomials fl,..., f, E F2 [x] and positive e, . . ., e, in N. 

In the last years, dramatic progress in the area of polynomial factorization has 
been made, both in theory and in practice. The classical algorithms for polyno- 
mials over finite fields are due to Berlekamp (1967, 1970), Cantor & Zassenhaus 
(1981), and Ben-Or (1981). Many variants and asymptotically faster algorithms 
have been proposed more recently by von zur Gathen & Shoup (1992), Kaltofen 
(1992), Niederreiter (1994), Gao & von zur Gathen (1994), Kaltofen & Lobo (1994), 
and Kaltofen & Shoup (1997, 1998). Implementations are described in Montgomery 
(1991), Kaltofen & Lobo (1994), Shoup (1995), Fleischmann & Roelse (1996), and 
Roelse (1999). See von zur Gathen & Panario (2001) or Chapter 14 in von zur 
Gathen & Gerhard (1999) for surveys. 

Section 2 gives an outline of the structure of some modern polynomial factoriza- 
tion algorithms. In Sections 3 and 4, we discuss and analyze a new variant of the 
distinct degree factorization stage in those algorithms, using interval partitions with 
polynomially growing interval sizes. In Sections 5 and 6, we indicate how the dis- 
tinct degree factorization stage over F2 can be further speeded up by a special way 
of computing interval polynomials and by the use of an irreducibility test running in 
parallel on a second processor. An implementation of the polynomial factorization 
algorithm over F2 is described in Section 7, including examples of running times 
with pseudorandom inputs. It is able to factor pseudorandomly chosen polynomials 
of degree more than 250 000 in less than one day on two UltraSparc-II processors 
of a Sun Enterprise 450 clocked at 450 MHz. Recently, a parallelized variant of 
the software was able to factor a pseudorandom polynomial of degree more than 
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one million in four days of CPU time on a Linux PC with four Pentium III proces- 
sors clocked at 500 MHz (Bonorden, von zur Gathen, Gerhard, Miiller & N6cker 

2001). 
We have concentrated on optimizing our implementation for the distinct degree 

factorization stage. Of course, more work is required to also optimize for cases 
where the input is known to be special, say when we factor trinomials or cyclotomic 
polynomials. In particular, we have not optimized the equal degree factorization 
stage of our software. 

A preliminary version of this work has appeared in Proc. ISSAC '96, ACM 
Press, Ziirich, Switzerland, pp. 1-9. A more detailed version is in von zur Gathen 
& Gerhard (1996). 

2. POLYNOMIAL FACTORIZATION 

Many of the modern polynomial factorization algorithms over finite fields (Can- 
tor & Zassenhaus (1981), Ben-Or (1981), von zur Gathen & Shoup (1992), and 
Kaltofen & Shoup (1998), Algorithm D, but not those of Berlekamp (1967, 1970), 
Gao & von zur Gathen (1994), Kaltofen & Lobo (1994), Niederreiter (1994), and 
Kaltofen & Shoup (1998), Algorithm B) proceed in three stages: 

1. Squarefree factorization (SFF). Given a nonconstant monic polynomial 
f E lFq[x] of degree n, compute the unique monic squarefree and pairwise 
coprime polynomials gl,..., gn IFGq[x] such that 

f <i= <n(g) 
1<i<n 

2. Distinct degree factorization (DDF). Given a nonconstant monic and 
squarefree polynomial f E Fq,[] of degree n, compute its unique decomposi- 
tion 

(1) f= H ha 1<d<n 

into monic polynomials hi,..., hn IFq [x] such that each hd has only irre- 
ducible factors of degree d. Such an hd is called an equal-degree polynomial of 
order d. 

3. Equal degree factorization (EDF). Given integers d,r E N with r > 2 
and a squarefree equal-degree polynomial f E Fq [] of order d and degree 
n = rd, compute its r irreducible factors. 

In this and the following sections, M (n) denotes the multiplication time for poly- 
nomials over Fq, i.e., two polynomials of degree less than n can be multiplied with 
at most M(n) operations in Fq. By Sch6nhage & Strassen (1971) and Schonhage 
(1977), we may assume that M(n) C O(n log n loglog n) (see also Cantor & Kaltofen 

1991). In our implementation, we use M(n) E O(nlog1"59 n) for q = 2 (Cantor 
1989). We also use here that a division with remainder and a gcd for polynomials 
of degree at most n can be computed using O(M(n)) and O(M(n) log n) operations 
in Fq,, respectively (see, e.g., von zur Gathen & Gerhard 1999, Chapters 9 and 11). 

Using the deterministic algorithm of Yun (1976), stage 1 can be performed at 
essentially the cost of one gcd, i.e., with O(M(n) log n) operations in Fq. The algo- 
rithm of Kaltofen & Shoup (1998) performs stage 2 using O(ni1815 log q) operations 
in Fq. It is the asymptotically fastest of the currently known algorithms for distinct 

degree factorization when the field size q is fixed. Finally, stage 3 can be performed 
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with O(n17 + M(n) log r log q) operations in Fq, using a probabilistic algorithm of 
von zur Gathen & Shoup (1992). 

We now briefly present the algorithm for SFF over the binary field F2 that we 
use in our implementation. In fact, it works over any finite field of characteristic 
two. 

Algorithm 2.1. Squarefree factorization. 
Input: A nonzero polynomial f E F2 [x] of degree n E N. 
Output: Squarefree and pairwise coprime polynomials gl,... , E F2 [x] such that 

f = fl<i<n g. 
0. If deg f = 0 then return the empty sequence. 
1. Set g = gcd(f, f'). { Comment: g = (g293)2(g9495)4(g9697 )6... 
2. Recursively compute the squarefree factorization hl,... , h, of gl/2, where 

2m = degg < n. 

{ Comment: hi = g2ig2i+l for 1 < i < m, where gn+l = 1 is assumed. } 
3. Set h f /g. { Comment: h gg= 91939597g7' 
4. Repeat step 5 for i from m down to 1. 
5. { Loop invariant: h = 

no<j<i g2j+1 } 
Set g2i+1 = gcd(hi, h), g2i = hi /g2i+, and replace h by h/g2i+i. 

6. Set gi = h and gj = 1 for 2m + 1 < j < n. 
7. Return gl,. . ., gn. 

The correctness of the algorithm is clear from the comments contained therein, and 
it can be implemented so as to use O(M(n) log n) operations in F2. 

3. DISTINCT DEGREE FACTORIZATION 

If one factors uniformly generated random polynomials, the dominating cost of 
the overall algorithm is the cost of the DDF. The reason is that probably an EDF 
has to be performed only on equal-degree polynomials of small degree (see Flajolet, 
Gourdon & Panario (1996) for a detailed analysis). This is confirmed by tests of 
our factorization routine on random inputs, as reported in Section 7. In this paper, 
we do not discuss the EDF further. 

In the following, we briefly discuss the basic idea of all DDF algorithms over 
the finite field Fq,. In addition to M(n), we use the following cost measures for our 
algorithms: 

* P(n), the cost for computing one modular product of two polynomials of degree 
less than n modulo a fixed polynomial of degree at most n. 

* Q(n), the cost for one modular qth power of a polynomial of degree less than n 
modulo a fixed polynomial of degree at most n. Then Q(n) 

_ 
2 [log2 qJ P(n). 

However, for q = 2, modular squaring is cheaper than a general modular 
multiplication. 

* D(n), the cost for one division with remainder of two polynomials of degree 
at most n. 

* G(n), the cost for one gcd computation of two polynomials of degree at most n. 
All of the functions above count operations in F,. We note that P(n), D(n) E 
O(M(n)), Q(n) E O(M(n)logq), and G(n) e O(M(n)logn). A high-level cost anal- 
ysis in terms of these functions is convenient to achieve simultaneously two goals: 
explicit "O"-free estimates, at least for the dominant term, for various algorithms, 
and also good asymptotic bounds. In our algorithms, many modular products 
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and modular squarings with the same fixed modulus occur, and we exploit this by 
preconditioning on the modulus as much as possible (see Section 7). 

Let f E Fq[x] be a monic squarefree polynomial of degree n. It is well known 
that for any i E N, 2x - x is the product of all monic irreducible polynomials in 
Fq[x] of degree dividing i (see, e.g., Lidl & Niederreiter 1983, Theorem 3.20). This 
leads to the well-known algorithm for computing the DDF (1) of f by successively 
computing gcd(f, xq' - x) for i - 1, 2, 3,..., Ln/2] and removing it from f. GauB3 
states this method in a manuscript written in 1798 or 1799, but only published 
in his NachlaB (GauB 1863, p. 237). It was rediscovered several times; see Galois 
(1830), Serret (1866), Arwin (1918), and Cantor & Zassenhaus (1981). The cost of 
the algorithm is 

-[ (Q(n) + D(n) + G(n)) C O(n - M(n)(log q + log n)) 

operations in F,. One drawback of the algorithm is that most of the gcds computed 
will equal 1, since a random polynomial of degree n has about log n irreducible 
factors on average (Berlekamp 1984, exercise 3.6, see also Knopfmacher & Knopf- 
macher 1993). The cost for a gcd computation for polynomials of degree at most 
n differs by a factor of O(log n) from the cost for a multiplication or a division 
with remainder (in our experiments about 3 log2 n), and for large values of n, the 
computation of a gcd is much more costly than a multiplication or a division with 
remainder, and computation time is wasted without noticeable progress. 

To overcome this problem, some polynomial factorization algorithms (von zur 
Gathen & Shoup 1992, Kaltofen & Shoup 1998) use a "blocking strategy": the 
range {1,..., Ln/2J } for the degrees of possible nontrivial factors of f excepting 
the one of largest degree is partitioned into intervals I1,.. ., Ik, and there is one gcd 
computation per interval Ij which extracts the product of all irreducible factors of f 
with degree in Ij (coarse DDF). If that gcd turns out to be 1, we know that hi = 1 
for all i E Ij, having computed only one gcd instead of #Ij many. If the degree of 
the gcd is less than 2 min Ij, then we have found an irreducible factor. Otherwise, 
however, a further step has to be performed to compute the hi for i E Ij, e.g., by 
a linear or binary search of the interval (fine DDF). 

We now introduce some notation. Let m = [n/2J. An interval partition of 
{1,...,m} is a sequence of integers 0 co < cl < c2 < ... < Ck-1 < ck m, 
where 0 < k C N is the length of the partition. The sets Ij = {cj-1 + 1,..., cj} for 
1 < j < k are the intervals of the partition (see Figure 1). For c, d E N with c < d, 
we define (c, d] to be the set of polynomials 

{f E F,[x] : c < degp < d for any irreducible factor p of f}. 

I 12 Ik 

I I I I cC2 I I 
1 c 

c2 C+k-1+c1 
tkJ 

FIGURE 1. An interval partition. 
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By an interval polynomial for Ij we mean a polynomial in (0, cj] that is divisible 
by each irreducible polynomial in (cjy1, cj]. For example, 

(2) 
_ (1<i<c 

) 
cj -1 <j< cj 

is an interval polynomial for Ij, used in von zur Gathen & Shoup (1992). Another 
example is the polynomial 

JiJ (qC - q )1 
O<i<cj -cj-1 

from Kaltofen & Shoup (1998). We note that interval polynomials need not be 
squarefree. Kaltofen & Shoup also use this terminology, but their interval polyno- 
mials differ from ours in that they are already reduced modulo the polynomial to 
be factored. 

For polynomials a, b E Fq [] with b # 0, we denote the remainder of a modulo b of 
degree less than deg b by a rem b. With the above notation, a coarse DDF algorithm 
can be stated as follows. 

Algorithm 3.1. Coarse DDF. 
Input: A monic squarefree polynomial f E F,[x] of degree n. 
Output: The polynomials Hj = l I hi c Fq[x] for 1 < j < k, where hi,..., 

hn are the distinct-degree factors as in (1), plus an irreducible factor of f of degree 
more than n/2, if such a factor exists. 

1. Bo = f. 
2. Repeat steps 3 to 5 for j = 1,...,k. 
3. Compute the remainder Ij of an interval polynomial 

for Ij modulo Bj_ . 
4. Hj = gcd(Ij, Bj-1). 

5. B=Bj1 { Loop invariant: fB 1By hh. } 3 
H1<l<cj 

6. Return HI,..., Hk. If B, H k 1, then also return Bk. 

For constant interval sizes, the above scheme already appears in von zur Gathen 
& Shoup (1992), Shoup (1995), and Kaltofen & Shoup (1998). Their algorithms 
differ in the computation of the interval polynomials. Note that the coarse DDF 
algorithm is exactly the ordinary DDF algorithm when cj = j for 1 < j < m. 
Intuitively, the interval partition should be chosen in such a way that the intervals 
increase in size, since a random polynomial has many small but only few large 
irreducible factors on average. 

Using the remainder modulo Byj_ of the polynomial (2) for Ij, step 3 can be 
implemented as follows. 

(a) Set Iy = 1 and a - xqcj- rem Bj-2, which has already been computed by 
former iterations of the loop 2 if j > 2. 

(b) For i = cj-1 + 1,..., cj replace a by aq rem Bj_l and Ij by 

Ij 
- (a - x) rem Bj-1. 

Thus the cost for the computation of Ij is (cj - cj-1) 
modular qth powers and the 

same number of modular multiplications, and the cost of the above algorithm is at 



most 

m -(P(n) + Q(n)) + k - (D(n) + G(n)) E O(M(n) - (n log q + k log n)) 

operations in Fq,. Thus we have reduced the number of gcd computations from m 
to k in comparison to the simple DDF algorithm. The price we pay for this is m 
additional modular multiplications-which are cheaper than gcd computations- 
and the fact that we do not yet have the complete DDF of f. If Hj , 1 and the 
degree of Hj is less then 2(cj_1 + 1), then we know that Hj is irreducible and equal 
to hdeg Hj, and also hi = 1 for cj-1 < i < cj with i : deg H3. Otherwise, a fine 
DDF on Hj will be performed, but the hope is that this will not happen very often, 
in particular not when Hj has high degree. Of course, whether this is the case 
heavily depends on the choice of the interval partition. 

In practice, the algorithm will be stopped as soon as deg Bj < 2(cj-1 + 1), since 
then Bj must be irreducible and equal to hdegBj (this is sometimes called early 
abort), but in order to keep things simple, we do not take this into account in the 
following analysis. 

The interval partition cj = lj with constant interval sizes and 1 = [n)] is used 
by von zur Gathen & Shoup (1992) for 

- 
= 1/2 and by Kaltofen & Shoup (1998) 

for 0 < p < 1. Their algorithms rely on fast multipoint evaluation over the ring 
Fq[x]/(f) and on fast matrix multiplication for the computation of the interval 
polynomials. The cost for the gcd computations in Kaltofen & Shoup (1998) is 
O((n0 + nl-,)M(n) log n). 

4. WORST CASE ANALYSIS OF THE COARSE/FINE DDF ALGORITHM 
WITH POLYNOMIALLY GROWING INTERVAL SIZES 

Let m = [n/2J. In this section, we assume that the interval partition is defined 
by cj = min{ Fjd], m} for some d R with d > 1. For simplicity, we assume that 
d E N in the following. The number of intervals is k = Fml/d]. We will analyze 
the total cost to compute the complete DDF in the worst case when using a linear 
search fine DDF algorithm, as follows. 

Algorithm 4.1. Linear search fine DDF. 
Input: j E {1,... , k}, the polynomial Hj = H EIJ hi E Fq[x], where the hi are as 
in (1), and Aj = 

xqcj-i rem Hj E Fq[x]. 
Output: The polynomials hi E Fq[x] for i E Ij. 

1. Set b,j_ l = Hj and ac,_ l = Aj. 
2. Repeat steps 3 to 5 for i = cj-1 + 1,...,cj. 
3. ai = a? rem bi. 
4. hi = gcd(ai - x, bi-1). 

5. bi= b-b1 
hi 

{ Loop invariants: Hj 
= 

bi i hi and ai =_ Xe mod bi. } 
cj-1<l<i 

6. Return hj_ 1+1, ..., he~ . 

This is just the part of the ordinary DDF algorithm for the interval Ij, with 
the only exception that the polynomial bcj_, 

at the beginning of the iteration is in 
(cj-1, cj] and not only in (cj_1, n]. It was also used by von zur Gathen & Shoup 
(1992) and Kaltofen & Shoup (1998). 
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An easy calculation shows that 

#Ij = c - cj-1 < jd - (j - 1)d < djd-1 

for 1 < j < k, so that the size of the largest interval in the partition is at most 
dkd-I = d[ml/d]d-1 < dn(d-1)/d if n > (1 - 2-1/d)-d. Let nj = degHj for 
1 < j < k. The number of operations in Fq for a fine DDF on the interval Ij is 

(cj - cj-i)(Q(nj) + G(nj) + D(nj)). Thus we obtain a total cost of 

S(cj 
- 

cyj1)(Q(nj) + G(nj) + D(nj)) 

" dn(d-l)ld (Qo(nj) + G(nj) D(nj)) 

< dn(d-l)/d(Q(n) + G(n) + D(n)) 

E O(n(d-l)/d M(n)(logq + log n)) 

operations in Fq for all intervals, since El<j<k nj < n and we may assume that 

Q(n), G(n), and D(n) are superlinear functions of n, i.e., Q(n + m) 
_ 

Q(n) + Q(m) 
for all sufficiently large n, m E N, and similarly for G and D. 

Since the coarse DDF algorithm already computes the remainder of Xqc1 mod- 
ulo some multiple of Hj, the cost for the computation of Aj is D(n) operations in 

lFq for one division with remainder by Hj for 1 < j < k. Thus the overall cost for 
both the coarse and the fine DDF algorithm is at most 

np(n) + dn(d1)/d + 2n1/d) D(n) + + dn(d-1)/d)Q(n) 

+ (dn(d1)/d+nl/d) G(n) 

operations in Fq for n large enough. Minimizing the two exponents (d - 1)/d and 

1/d leads to d = 2 and the following result. 

Theorem 4.2. The distinct degree factorization of a squarefree polynomial f 6 

Fq [x] of degree n can be computed using O(n1/2M (n) log n) operations in Fq for gcd 
computations, and O(n - M (n) log q) operations in Fq in total. This can be achieved 

by means of a coarse DDF algorithm with interval partition defined by cj = j2 and 
a fine DDF algorithm with linear interval search. 

Note that this saves a factor of log n in comparison to the asymptotic running 
time of the simple DDF algorithm, which in particular for q = 2 is a significant 
gain. The same could be achieved with the interval partition cj 3 -/nj as in 
von zur Gathen & Shoup (1992), but our approach seems to be better suited for 
random polynomials, which tend to have many irreducible factors of small degree 
and only few of high degree. The cost for gcd computations in our algorithm is the 
same as in Kaltofen & Shoup (1998) when 3 = -, but their total running time is 

asymptotically smaller due to a faster way of generating the interval polynomials. 
It follows from the results in von zur Gathen, Gourdon & Panario (2002) that 

for polynomially growing interval sizes, the expected total number of factors in the 
"bad" intervals is constant for random inputs, so that a fine DDF algorithm with 
binary interval search promises to save some more gcd computations. 
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5. COMPUTING INTERVAL POLYNOMIALS 

In our implementation of the coarse DDF algorithm over F2, we use the following 
trick to save multiplications in the computation of interval polynomials. A similar 
method has also been used by Montgomery (1991). We let f E F2[x] be the poly- 
nomial to be factored with no irreducible factors of degree at most c, n = deg f, 
and we want to compute the remainder modulo f of an interval polynomial for the 
interval {c + 1,..., d} C {1,... , deg f}, with c and d divisible by 4 for simplicity. 
Then instead of computing the remainder modulo f of the interval polynomial 

(3) 
2 

(xc+?x) 
c<i<d 

by iterative modular multiplication with x2* + x for c < i < d, we compute the 
remainder modulo f of the multiple 

(4) n V(x, x24i+3 
c<4i<d 

of (3) by iterative modular multiplication with V(x, z24i+3), where 

V (y - u) = y8 + v4y4 + v2y2 + Vly + vo E F2[x, y], 
uEU 

U = {x, 
2 x4 x8,x + 2 + x4 x2 + 8 + 4 + 8x2 + 4 + x8}, 

and vo, v1, v2, V4 E F2[x] are of degree at most 43. The polynomial V is an F2- 
linearized polynomial over IF2 [x], and U is a coset of a three-dimensional F2-subspace 
of F2[x]. Noting that 

V(x, x24i+3) x24i+6 + 24i+5 224i+4 x24i+3 + v mod f, - + v1qx + v~Lx + Vl11 + vo0 mod f, 

we compute V(x, x24i+3) rem f using 4 modular squarings, 4 additions, and 3 mod- 
ular multiplications by v1, v2, and v4. Since the latter polynomials are "small", 
modular multiplications by them essentially cost the same as a scalar operation, and 
the dominant cost in the computation of V(x, x24i+3) rem f is 4Q(n). Thus the com- 
putation of the polynomial (4) modulo f costs essentially (d-c)/4-P(n)+(d-c)Q(n) 
operations in F2, in contrast to (d - c)P(n) + (d - c)Q(n) operations for the poly- 
nomial (3). 

We note that the polynomial (4) is not an interval polynomial in general. The 
factors 

(y+x+x2 + 4)(Y + + 2 + 8)(Y + 4 + 8)( + 2 + X4 + 8) 

of V, whose sole purpose is to make V a linearized polynomial (if V were not 
linearized, this would imply additional modular multiplications), may give rise to 
irreducible "phantom" factors in the gcd of f and (4) of degree outside the interval 

{c + 1,... ,d}. Since f has no irreducible factors of degree at most c, it is only 
possible that phantom factors of degree more than d occur. The phantom factors 
are detected in the fine DDF algorithm; their product is singled out and factored 
recursively. We guess that phantom factors rarely occur for random polynomials, 
and in fact they never occurred in any of our experiments. 
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In the fine DDF algorithm, we compute the remainder modulo f of the interval 
polynomial 

I ( + x2)(22i + x) 1 (X22i-1 x)2 (X22i + 
x) 

c<2i<d c<2i<d 

= (x22i-1+X) II 
2 (x2iX) 

c<2i<d c<i<d 

by iterative modular multiplication with 

(x22i + 
2)(X22i 

+ 
X) - 

x22i+1 + 
(X2 

+ 
X)X22i 

+ 3, 

if c and d are both even. This takes essentially (d - c)/2 - P(n) + (d - c)Q(n) 
operations in F2. Here, no phantom polynomials like in the coarse DDF algorithm 
can occur. 

6. EMPLOYING IRREDUCIBILITY TESTS 

In this section, we indicate how to speed up the coarse DDF algorithm by using 
an irreducibility test. Suppose that we have already found all irreducible factors of 
f E F2 [x] of degree at most c E N, and that a "large" factor b E F2 [x] collecting all 
irreducible factors of f of degree more than c remains. If b is irreducible, then the 
coarse DDF algorithm will only find this out after reaching the degree (deg b)/2, 
and this may take most of the total time spent for factoring f, as our experiments 
in Section 7 indicate. 

In our implementation, we run an irreducibility test on b in parallel to the coarse 
DDF algorithm on a second processor. If the coarse DDF algorithm finds a fac- 
tor, the irreducibility test is aborted and restarted for the remaining polynomial. 
If, however, the irreducibility test says that the polynomial is irreducible, then 
the coarse DDF algorithm is aborted. The irreducibility test we use is based on 
Fact 7.3 and Theorem 7.5 in von zur Gathen & Shoup (1992), has an asymptotic 
running time of O((n2+n1/2 M (n)) log2 n/ loglog n) operations in F2 for a squarefree 
polynomial in F2 [x] of degree n, and uses space for O(n3/2) elements of F2, where 
n - deg b. It involves the computation of matrix products of size about n1/2 x n1/2, 
which we compute with O(n3/2) operations in F2, using classical matrix arithmetic. 
The same technique was also used in Shoup (1995) for the computation of modu- 
lar compositions. The asymptotic analysis of the irreducibility test does not show 
a substantial difference with the time for the coarse DDF algorithm, but in our 
implementation it significantly reduces the total running time. We have further 
speeded up the irreducibility test by keeping large amounts (growing quadratically 
with the input degree) of intermediate data in secondary storage, as follows. 

In the course of the coarse DDF algorithm, the remainders of the polynomials 
x2,x 4 

8, ... 
,2c 

modulo multiples of b are computed and written to disk. The 
irreducibility test from von zur Gathen & Shoup (1992), applied to b, computes 

x2deg 
b 

rem b and x2degb/t rem b for all prime divisors t of deg b with (deg b)/t > c. 
To compute x2e mod b for some e E N, we use one precomputed value, namely for 
the largest binary prefix of e that is available, and then only have to shift and take 
care of the low order digits of e. 
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Algorithm 6.1. Frobenius powers. 
Input: b E F2[x] with b(O) 0 and e E N \ {0}. We assume that the remainders of 
the polynomials x2, 4, x8,... ,x2e modulo b have already been computed for some 
ce N. 
Output: g E F2[x] with deg g < deg b and g = 

x2e mod b. 

1. Take the binary representation e = -o<j<l ej2'-j of e, with ej E {0, 1} for 
0 < j < 1 and eo = 1. 

2. Let k E {0,...,1} be minimal such that [e/2kJ = 

•Oj<_l-k 

ej21-k-j < c, 
and set gl-k = 2Le/2k rem b, performing one table-lookup. 

3. Repeat steps 4 and 5 for j = 1 - k + 1,...,1. 
4. Compute hj = gj-1(gj-1) rem b, using one modular composition. 
5. If ej = 0 then set gj = hj else compute gj = h? rem b. 

{ Loop invariant: 
gj- 

x2Le/21-jj mod b 
6. Return gl. 

The cost of the above algorithm is essentially at most [log2 J + 1 modular 
compositions, since the cost for the modular squarings is negligible. So if c is close to 
deg b, only very few modular compositions are sufficient to test b for irreducibility, 
in particular when deg b has no small prime factors. In fact, in our application we 
are given x2, x4,..., x2c modulo some multiples b* of b that divide the squarefree 
part of the polynomial f to be factored and such that b*/b is not divisible by x. 
Then we have an additional division with remainder by b in step 2, whose cost 
turned out to be negligible as well in our experiments. 

Since the space occupied by the data written to disk grows quadratically with 
the input size, the applicability of the above method is limited by the amount 
of disk space available. More precisely, if deg f = n, then the table with the 
c < [n/2] polynomials x2 rem f,... , x2C rem f uses c[n/8] bytes of memory. For 
degree 262 143 and greater, the table size easily exceeds 1GB in our experiments, 
but it is easy to modify our approach so as to make maximum use of storage in 
that case. 

We note that this irreducibility test can not only check whether b is irreducible 
or not, but can also detect when b is an equal-degree polynomial of order dividing 
deg b, using Fact 7.4 in von zur Gathen & Shoup (1992). 

7. IMPLEMENTATION AND RUNNING TIMES 

In this section, we describe our implementation of the polynomial factorization 
algorithm over F2 on a Sun Enterprise 450 Model 4400 with four UltraSparc-II 
processors rated at 400 MHz each, running Solaris 5.6. Our algorithm uses at 
most two of the four processors. The software is a C++ library called BIPOLAR (for 
binary polynomial arithmetic), and the code was produced using the GNU compiler 
version 2.8.1. Polynomials over F2 are represented as arrays of 32-bit unsigned 
integers, and 32 consecutive coefficients of a polynomial are packed into one machine 
word. We built a C++ class for polynomials over F2 offering standard operations 
like copying, reversing, shifting, and determining the degree of polynomials, the 
arithmetic operations addition, multiplication, squaring, division with remainder, 
and the Extended Euclidean Algorithm. 
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Polynomial multiplication. The efficiency of the currently known polynomial 
factorization algorithms over finite fields relies on fast polynomial arithmetic, in par- 
ticular, on fast polynomial multiplication. The multiplication method of Karatsuba 

(Karatsuba & Ofman 1962) has an asymptotic running time of O(n159) operations 
in F2 for polynomials of degree less than n, which is better than the O(n2) bound 
for the naive multiplication algorithm, but still too slow in practice for large n. 
Schdnhage (1977) gives an O(n log n loglog n) algorithm based on a ternary FFT 
with roots of unity of 3-power order. In contrast to Sch6nhage's algorithm, which 
evaluates and interpolates at suitable subgroups of the multiplicative group of an 
extension field F2m of degree m n1/2 over F2, a method by Cantor (1989) uses 
evaluation and interpolation at additive subgroups, i.e., IF2-linear subspaces of F2m, 
where m - log n is a power of two. It leads to an O(n log1.59 n) polynomial multipli- 
cation algorithm over IF2. In von zur Gathen & Gerhard (1996), Cantor's approach 
is generalized (the extension degree m need no longer be a power of two), yielding 
an O(n log2 n (loglog n)3) multiplication algorithm. 

Reischert (1995) implemented several algorithms for polynomial multiplication 
over F2, including those by Karatsuba, Sch6nhage, and Cantor. Shoup (1995) suc- 
cessfully implemented a fast FFT-based algorithm for multiplying polynomials over 

IF, for a prime p, using a modular approach, but it seems to be practical only when 
p is not too small. In his software package NTL (http://www.shoup.net/ntl/), 
Shoup also has a special data type and arithmetic for polynomials over IF2. As of 
version 4.0a, NTL implements only Karatsuba's algorithm for polynomial multipli- 
cation over IF2. Roelse (1999) reports on an implementation of both Karatsuba's 
and Cantor's algorithm. 

Besides the school method, we have implemented the algorithm of Karatsuba 
and Cantor's method with subspaces of IF216 and of IF232. The timings in von zur 
Gathen & Gerhard (1996) indicate that the generalizations described there do not 
speed up the method. We did not implement Sch6nhage's algorithm either. The 
timings of Reischert (1995) indicate that in his implementation, it beats Cantor's 
method for degrees above 500 000, and for degrees around 40000000, Sch6nhage's 
algorithm is faster than Cantor's by a factor of about 3/2. 

As basis for the classical multiplication and the method of Karatsuba, we have 
tried several methods for the multiplication of polynomials of degree less than 32: 
direct classical multiplication, 3 classical multiplications of 16-bit blocks ' la Karat- 
suba, and 9 multiplications of 8-bit blocks a la Karatsuba, where the 8-bit blocks 
are multiplied via table-lookup (the corresponding table uses 128k bytes of main 

memory). The last variant turned out to be the fastest. 
Multiplication in IF216 is implemented by means of two exponentiation and dis- 

crete logarithm tables with respect to a primitive element of the multiplicative 
group. This was also done by Montgomery (1991) and Reischert (1995). The cost 
for one multiplication in F216 is then essentially the cost for three table lookups 
and one addition of 16-bit integers. The size of each of the two tables is 256k bytes 
of main memory. For multiplications in IF232, the corresponding tables are far too 
large to fit in main memory, and we use an alternative approach. 

We employ two representations for elements of IF232. The first is the usual polyno- 
mial basis representation o0<i<32 4ai , where a = x mod G for an 
irreducible generating polynomial G F2 [x] of degree 32 for F232. This will be 
referred to as representation A in what follows. The second is a polynomial ba- 
sis representation of F232 over IF216. We have chosen the primitive polynomial 
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F2[x]/(G) F2(a) = F232 F216 (a) F216 [X]/(F) 

representation A representation B 

F216 = F2(/) = F2[x]/g9) 

F2 

FIGURE 2. Two representations of F232. 

g = 
X16 + X15 + X13 9 X4 + 1 C F2[x] as generating polynomial of F216 over F2, and 

write elements of F216 in the polynomial basis representation Z0<i<16 biPi with 

0 = x mod g C F2[x]/(g) = F216 and all bi E F2. (There is no irreducible trinomial 
of degree 16 in F2 [x].) The polynomial F = x2 + x + IF216 [x] is irreducible over 
F216, and G E F2 [x] was chosen as the minimal polynomial of a root a E F232 of F. 
Figure 2 illustrates the structure of the field extensions. Hence we may represent 
elements of F232 as Ala + Ao, with Ao, A1 E ]F216. We call this representation B. 
The product with another element Bla + Bo of F232 can be computed as 

(Aa + Ao)(Bla + Bo) = AiBi(a + P) + (AoB1 + AiBo)a + AoBo 

= ((A1 + Ao)(Bi + Bo) + AoBo)a + (A1BIu + AoBo), 

using 3 multiplications in F216 (the multiplication of A1B1 by 3 is just a shift in the 
polynomial basis representation of F216, followed by an addition of the generating 
polynomial g if necessary). 

If we want to multiply two polynomials a, b E F2 [x] using multipoint evaluation 
and interpolation at linear subspaces of one of the fields F2m with m E {16, 32} as 
above, we write a and b as 

a= aiyi, b= biy, 
o<i<m/2 0<i<m/2 

with ai, bi E F2[x] of degree less than ! and y = zm/2. Then we regard y as a 
new indeterminate, substitute a generator -y of F2m = F2 [-] over F2 for x in the 
ai and bi, and multiply the resulting polynomials over F2m [y]. Finally, we replace 
-y by x in the coefficients of the product polynomial, and compute ab E F2 [x] by 
substituting xm/2 for y. In this way, we can multiply polynomials in F2 [x] of degree 
less than m2m-2, that is 218 f 500 000 for m = 16 and 235 % 32 - 109 for m = 32. 

In the case m = 32, where -y = a, we have to convert the coefficients of the 
polynomials over F232 from representation A to representation B in order to perform 
multiplication in F232 as described above. This is done once when converting the 
polynomials over F2 to polynomials over F232, and the reverse conversion from 
representation B to representation A is done before computing ab e F2 [x] from the 
product polynomial over F232 [y]. The conversions are done using table lookups, 
and each of the two conversion tables is of size 256k bytes. 
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TABLE 1. Average times in CPU seconds for one multiplication of 
two polynomials of degree n - 1. 

n classical Karatsuba Cantor Cantor 
m=16 m= 32 

16384 0.07 0.01 0.02 0.02 
32 768 0.28 0.04 0.04 0.04 
65 536 1.11 0.11 0.09 0.08 

131 072 4.47 0.33 0.19 0.18 
262144 17.85 1.00 0.43 0.40 
524288 71.38 3.00 0.93 0.88 

1048 576 285.58 9.02 1.89 

Table 1 shows the average time in CPU seconds to multiply polynomials over 
F2 with the various algorithms for 10 pseudorandomly chosen inputs. There are no 
entries for Cantor's algorithm with m = 16 for degrees larger than 524 288 because 
of the method's degree constraint. It is interesting that our implementation of 
Cantor's algorithm with m = 32 is slightly faster than the variant with m = 16. 
A possible reason is that the degree in y of the polynomials over F216 and F232 
differs by a factor of 2 for the same polynomial in F2, so that the recursion depth 
in the multipoint evaluation and interpolation algorithms over F232 is one less than 
over F216; this seems to outweigh the fact that the cost for a multiplication in F232 is 
approximately three times the cost of a multiplication in F216. Since the differences 
in the running times are rather small and the variant with m = 16 is not applicable 
for degrees larger than 262 144, we use m = 32 throughout. 

Our implementation is about 14 times faster than the implementation of Mont- 
gomery (1991) on a slower Sun 4/260 machine, about 4 times faster than the imple- 
mentation of Reischert (1995) on a slower Sun Sparc 10/41 machine, and about 3.3 
time faster than Roelse's (1999) implementation on a slower IBM RS6000 machine 
clocked at 67 MHz. The reason that our implementation is faster than the ones 
above is probably mainly due to a faster processor. We also ran a series of tests 
with NTL against our software on the Sun Enterprise 450, and it turned out that 
Shoup's implementation of Karatsuba's algorithm is faster than our Karatsuba im- 
plementation by a factor of about 1.6. Our implementation of Cantor's algorithm 
beats the NTL multiplication routine for degrees above 131 072. For example, for 
degree 1 048 576, our implementation is faster by a factor of about 3. 

The crossover point in our implementation between the classical algorithm and 
Karatsuba is near degree 576, and between Karatsuba and Cantor with m = 32 
near degree 35 840. We switch between the three multiplication algorithms at those 
degrees in our multiplication routine, which is also used as a subroutine when 
computing fast divisions with remainder and polynomial gcds. 

One problem that often occurs when multiplying polynomials with the evalu- 
ation / interpolation method is that the running time of the resulting algorithm 
is rather discontinuous. In our situation, the running time function for Cantor's 
algorithm is nearly constant for polynomials with degrees between two successive 
powers of two and has discontinuities at the powers of two. This is due to the 
fact that in order to be fast, we only evaluate and interpolate at point sets whose 
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TABLE 2. Average times in CPU seconds for one division with 
remainder of a polynomial of degree 2n - 3 by a polynomial of 
degree n - 1. 

n classical Newton inversion 
precomp. remainder 

16 384 0.07 0.02 0.03 
32 768 0.28 0.06 0.07 
65 536 1.11 0.27 0.09 

131072 4.51 0.65 0.19 
262144 17.99 1.47 0.42 
524 288 71.93 3.25 0.91 

1048 576 288.44 7.49 1.96 

cardinality is a power of two. We use a technique described in von zur Gathen & 
Gerhard (1996) to smooth this behavior. 

Polynomial division. For division with remainder, we use the classical method 
for small degrees and Newton inversion (see von zur Gathen & Gerhard 1999, Chap- 
ter 9) for large degrees. In the context of polynomial factorization, we are often 
in the situation that the divisor polynomial f is fixed throughout many divisions, 
namely the polynomial to be factored. Then Newton inversion admits the precom- 
putation of 

(5) (xdegf . f(x-1))-1 mod zdeg f 

which does not depend on the particular dividend, using O(M(deg f)) operations 
in F2, and the cost for computing one remainder modulo f is essentially the cost for 
two polynomial multiplications of degree less than deg f. If we use an evaluation / 
interpolation scheme like Cantor's algorithm for polynomial multiplication, further 
savings are possible by precomputing the multipoint evaluation of f and of the 
polynomial (5). This reduces the cost for one remainder computation modulo f to 
about M(deg f). A similar trick was used by Shoup (1995). 

One of the most important arithmetic operations in our implementation is mod- 
ular squaring, i.e., the computation of g2 mod f, where g is arbitrary and f the 
polynomial to be factored. Using the precomputed value (5) and a technique de- 
scribed in Reischert (1996), the cost for one modular squaring with fixed modulus 
f of degree n can be further reduced to about 5 M(n) when using the algorithm of 
Karatsuba for polynomial multiplication, and to about 5 M(n) when using Cantor's 
algorithm; see Reischert (1996) for the details. 

In our implementation of the irreducibility test described in Section 6, we are 
often in the situation of having to compute many modular multiplications of the 
form g - h mod f where not only the divisor f but also one of the multiplicands, 
say h, is fixed. Using essentially the same trick as Shoup (1995), we have reduced the 
cost for one such modular multiplication to about4 M (deg f ) when using Cantor's 
algorithm for polynomial multiplication. 

Table 2 shows the average time to compute one division with remainder using 
the classical method and Newton iteration, respectively, for 10 pseudorandomly 
chosen inputs. The crossover point between the two algorithms when neglecting 
the precomputation time is near degree 3584. 
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TABLE 3. Average times in CPU seconds for one gcd of two poly- 
nomials of degree n - 1. 

n classical [ "half-gcd" 
16384 0.45 0.43 
32768 2.01 1.12 
65 536 8.44 2.96 

131072 36.56 7.69 
262144 154.60 19.38 
524 288 586.16 47.67 

1048 576 2473.29 115.32 

TABLE 4. Practice vs. theory: ratio of experimental running times 
and theoretical bounds. In the second and third columns, the ratio 
is some constant times the time from the last column in Tables 
1 and 2, respectively, divided by n(log2 n)log2 3. The ratio in the 
fourth column is some constant times the time from the last column 
in Table 3 divided by n(log2 n)1+log2 3. The constants are chosen 
such that the ratios for n = 65 536 are equal to 1. 

n Cantor Newton inversion "half-gcd" 
m = 32 remainder 

16384 1.01 1.40 0.82 
32 768 0.99 1.81 0.89 
65 536 1.00 1.00 1.00 

131072 1.00 0.99 1.11 
262144 1.00 0.98 1.21 
524288 1.01 0.99 1.29 

1048 576 1.00 0.98 1.37 

Polynomial gcds. For the computation of gcds, we use both the classical method 
and and a faster O(M(n)logn) algorithm, also known as "half-gcd" (see Aho, 
Hopcroft & Ullman 1974, Strassen 1983, or Chapter 11 in von zur Gathen & Ger- 
hard 1999). Table 3 shows the average time in CPU seconds for the computation of 
one gcd using both methods for 10 pseudorandomly chosen inputs. The crossover 
point between the two algorithms is near degree 16 384. 

Table 4 illustrates the correlation between actual running times and the theoret- 
ical prediction for multiplication, division with remainder, and gcd computation. 
We have normalized by the times at degree 65 536. Since our software is built 
with hybrid routines having different asymptotics in various ranges, these functions 
cannot be expected to be completely smooth. 

Polynomial factorization. Our polynomial factorization algorithm consists of 
the three stages described in Section 2. For the squarefree factorization, we use 
Algorithm 2.1. 

To compute the distinct degree factorization, we have implemented the coarse 
DDF algorithm as described in Section 3, with early abort, and the interval partition 
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defined by cj = 2j2, with intervals I1 = {1,2}, 12 = {3,...,8}, 13 = {9,...,18}, 

..., Ij = {2(j - 1)2 +1,...,2j2}. Furthermore, we use a binary search fine DDF 
algorithm, as follows. To split a squarefree polynomial f E IF2 [x] whose irreducible 
factors have degrees in the interval {c + 1,..., d} C {1, ..., deg f}, we cut the 
interval into two halves of approximately equal size, compute a = gcd(f, h) E IF2 [x], 
where h E IF2 [x] is an interval polynomial for the lower half, and proceed recursively 
with a and f/a. The recursive process stops if deg f < 2(c + 1), in which case f 
is irreducible, or otherwise if c + 1 = d. In the latter case, f is an equal-degree 
polynomial of order d, and we compute its equal degree factorization. As soon as 
the coarse DDF algorithm has detected that a fine DDF is necessary, the fine DDF 
algorithm can be executed in parallel to the coarse DDF algorithm, but we have 
only implemented a sequential version, where the fine DDF is performed before the 
coarse DDF algorithm proceeds. 

As described in Section 5, we reduce the number of polynomial operations in 
the computation of an interval polynomial for the interval {c + 1,... , d} in the 
coarse DDF algorithm from d - c modular squarings and the same number of 
modular multiplications to d - c modular squarings and about (d - c)/4 modular 
multiplications. E.g., when using Karatsuba type polynomial multiplication, this 
cuts the running time down by a factor of 27/56, since the cost for a modular 
squaring modulo a fixed polynomial f of degree n is M 5 M(n), while the cost for a 
general modular multiplication modulo f is - 3 M(n). Montgomery (1999) uses a 
similar scheme with P (d - c)/3 modular multiplications. 

We use the irreducibility test as described in Section 6. The process is spawned 
on a second processor as soon as the coarse DDF algorithm reaches degree 1000, 
and spawned again every time the coarse DDF algorithm finds a new factor to check 
whether the remaining polynomial is irreducible. 

The equal degree factorization is done as in Ben-Or (1981), at an expected cost of 

O(d. M (rd) log r) operations in IF2 for a squarefree equal-degree polynomial of order 
d with r irreducible factors. This was necessary only for d < 14 in our experiments. 

Factorization experiments. Tables 5 and 6 show examples of running times on 
the main processor for the factorization algorithm. The elapsed wall clock time 
differs from the CPU time on the main processor by less than one per cent in all 
experiments, and we have omitted it. The third column contains the amount of 
disk space in megabytes that the algorithm used for storing intermediate results. 
For technical reasons, we had to limit the maximal amount of disc space to 2GB. 
This was a real restriction only for degrees 262 143 and 524 287. The fourth column 
shows the degree at which the coarse DDF algorithm ended or was aborted when 
the irreducibility test certified the remaining factor to be irreducible (in the latter 
case, the degree is written in italic). The benefit of using the irreducibility test 
may be considerable: for example, for the first polynomial of degree 131071 in 
Table 6, the running time of our software without the irreducibility test is 4h46', 
which is slower than the timing for the variant employing the irreducibility test by 
a factor of nearly 7. So even if we had run the irreducibility test in an interleaved 
fashion on the same processor, we would have obtained a speedup of about 3.5. 
The last column contains the factorization pattern, i.e., the degree sequence of the 
irreducible factors of the input polynomial. For example, in the fourth example of 
degree 65 535, we have two different linear factors of multiplicity one each, one cubic 
factor of multiplicity 2, one factor of degree 42 and multiplicity one, and so on. 
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TABLE 5. CPU times and secondary storage for factoring some 
pseudorandomly chosen polynomials of degree n. 

n time disk abort factorization pattern 
space degree, 

16383 92" 5 2692 15, 3, 42, 9, 361, 1667, 1827, 12 503 
16383 124" 7 3676 15, 3, 6, 7, 16, 26, 39, 80, 94, 110, 556, 2825, 

12616 
16383 130" 7 3698 12, 1, 8, 19, 2783, 13 570 
16383 147" 9 4720 14, 224, 266, 587, 1201, 4099, 10002 
16383 221" 13 6728 1 , 6, 24, 249, 283, 930, 6563, 8325 
32 767 7' 15 3854 12, 22, 8, 46, 306, 330, 32 071 
32767 20' 30 7442 12, 13, 2, 13, 23, 73, 140, 153, 393, 2145, 2177, 

3308, 3695, 7245, 13395 
32767 14' 42 10658 12, 30, 31, 34, 96, 1232, 1876, 3590, 3616, 

10 414, 11836 
32767 415' 38 9839 12, 16, 22, 90, 102, 359, 791, 798, 1824, 9085, 

19678 
32 767 16' 42 10447 14, 22, 9, 55, 2141, 9659, 20895 
65535 14' 37 4776 12, 14, 2, 33, 143, 319, 551, 2772, 61 709 
65 535 19' 52 6602 13, 1, 10, 31, 590, 824, 1037, 1898, 3831, 57 310 
65 535 20' 56 7098 15, 6, 10, 11, 99, 653, 2355, 3364, 5413, 53619 
65535 24' 71 9082 1, 1, 32, 42, 71, 205, 607, 852, 2197, 3066, 

3165, 7891, 47431 
65535 27' 75 9610 12, 5, 18, 29, 56, 80, 94, 259, 643, 1476, 3294, 

8328, 51251 

1, 1, 3, 4, 4, 9- 

361 

1, 1, 3, 6,7,16 
26, 39, 80, 94 6 

110 

1, 1, 1, 8, 19- 

1, 1, 1, 1-0 

224 266 

1, 1,1, 6- 

249 283 

FIGURE 3. Factorization patterns for five pseudorandom polyno- 
mials of degree 16 383 in F2 [x]. 

Figure 3 illustrates the factorization patterns for the degree 16 383 examples of 
Table 5. The width of a field corresponds to the degree of the respective irreducible 
factor. In our experiments, we never had to perform a fine DDF for total degrees 
above 8000 or an EDF for total degrees above 28. Since the algorithm is distributed 
over two processors, both the CPU time on the main processor and the elapsed 
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TABLE 6. CPU times and secondary storage for factoring some 
pseudorandomly chosen polynomials of degree n. 

n time disk abort factorization pattern 
space degree 

131071 41' 121 7736 12, 12, 2, 14, 20, 23, 331, 1187, 3696, 
125 794 

131071 46' 138 8824 1, 12, 27, 164, 612, 5402, 124863 
131071 lh40' 321 20526 1, 13, 3, 449, 483, 1274, 18 136, 110 722 
131071 2h04' 428 27378 1, 14, 14, 67, 203, 631, 3546, 3580, 3877, 

3924, 10 400, 23 894, 26 057, 27 069, 27 804 
131071 2h18' 469 29996 12, 13, 2, 5, 8, 68, 111, 359, 1048, 1607, 

12 758, 15 699, 28 780, 70 621 

262143 4h 14' 744 23794 1, 1, 9, 33, 41, 96, 291, 336, 795, 1860, 
2906, 18 555, 237 219 

262 143 7h43' 1487 47 560 1, 3, 215, 781, 16881, 29207, 29819, 
43 371, 45 887, 95 978 

262 143 7h59' 1495 47844 2, 56, 110, 174, 1096, 1876, 13616, 29823, 
44 413, 170 977 

262 143 10h40' 2044 65412 1, 22, 3, 11, 109, 259, 416, 1170, 1519, 1937, 
2488, 3125, 7247, 33 587, 62 673, 147 594 

262 143 15h47' 2047 95922 4, 7, 37, 96, 103, 177, 738, 1268, 1649, 1796, 
6283, 7015, 95459, 147520 

524287 16h15' 2046 42839 1, 12, 20, 830, 1443, 1538, 2054, 3175, 
33 369, 34 852, 447 003 

524287 20h 17' 2046 53792 1, 12, 15, 41, 132, 188, 1097, 4480, 7436, 
14419, 17 159, 44 788, 434529 

524287 43h48' 2046 125352 2, 12, 14, 14, 85, 113, 148, 296, 343, 345, 
6338, 31278, 48 200, 119 622, 317 477 

524287 44h06' 2046 126310 3, 25, 338, 1532, 12564, 33055, 98748, 
122 164, 255 858 

524287 64h25' 2046 183618 1, 13, 5, 52, 62, 67, 403, 561, 569, 1566, 
1776, 20384, 183268, 315570 

wall clock time depend on the work load of both processors: e.g., if the load on 
the processor testing for irreducibility is high, the abort degree of the coarse DDF 
algorithm (and hence the CPU time on the main processor) is higher than when 
the load is low. 

Let f e F2[x] be the polynomial to be factored and n = deg f. We denote 
by Si the degree of the ith largest irreducible factor of f E F2[x]. The actual 
running time of the algorithm on input f mainly depends on S2, for the following 
reasons. If S1 < 2S2, then the irreducibility test is of no help, and the coarse DDF 
algorithm with "early abort" stops at degree S2 (due to the blocking, the actual 
abort degree is somewhat higher in our experiments). Otherwise, the irreducibility 
test is spawned for the last time when the coarse DDF algorithm reaches degree S2, 
and in our experiments the remaining factor is certified to be irreducible quite soon 
afterwards. In fact, in Tables 5 and 6 the abort degree d never exceeds S2 by more 
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TABLE 7. Practive vs. theory: ratio of experimental running times 
and theoretical bounds for factorization. The times are taken from 
Tables 5 and 6, and the constant c is chosen such that the first 
ratio in the row for n = 65 535 is equal to 1. 

n c - time/(S2 n(log2 n)log2 3) 
16 383 0.81 0.70 0.75 0.57 0.54 
32 767 8.65 0.59 0.58 0.71 0.73 
65 535 1.00 0.95 0.72 0.60 0.62 

131071 0.98 0.75 0.48 0.40 0.42 
262 143 0.55 0.41 0.43 0.41 0.40 
524 287 0.52 0.50 0.41 0.40 0.39 

than 9004. We have S2 d < 2.1 . S2 in all our experiments, with one exception, 
namely for the first polynomial of degree 32 767, where S2 is very small. In fact, 
the average of d/S2 over 29 experiments (all but the exceptional one) is about 1.2. 

The running time is essentially proportional to S2 - t, where t is the average time 
for the multiplication of two polynomials of degree about n. This is O(n M (n)) or 
O~ (n2) when we use Cantor's multiplication algorithm, since S2 < n/2. Similar 
to Table 4, Table 7 displays the ratios of actual running times versus predictions, 
normalizing at the first polynomial of degree 65 535. The exceptional polynomial 
mentioned before is reflected by the ratio 8.65 in Table 7. 

The average times for one modular squaring and one general modular multi- 
plication modulo a factor of f are at most % 

•t 
and 2t, respectively, when using 

Cantor's multiplication method. If d < n/2 is the degree where the coarse DDF 
algorithm stops and if we neglect the cost for precomputations in the division al- 
gorithm, gcd computations, fine DDF, and EDF, then the algorithm essentially 
performs d modular squarings and about d/4 modular multiplications to compute 
interval polynomials. This yields an estimate for the total running time of 4dt 
with Cantor's multiplication, which is in good accordance with the times in Tables 
1 and 6. In fact, the times in Table 6 are higher by a factor of up to about 20 per 
cent, due to the gcd computations. The worst case for our DDF algorithm is when 
f has two irreducible factors of distinct degrees, both about n/2. The irreducibility 
test does not help then, and we get an estimated running time of gnt. 

Factoring trinomials can be done still faster, since division with remainder by 
a trinomial costs essentially the same as a polynomial addition. For example, 
when using Cantor's multiplication, the cost for the computation of an interval 
polynomial modulo a dense polynomial f for the interval {c+ 1,..., d} is essentially 
4 (d - c) M (deg f), while for a trinomial f this can be done with only about (d - 

c)/4. M(deg f) operations. This leads to an estimated running time of -dt, where d 
and t are as above. We have implemented a variant of our factorization algorithm 
for trinomials of the form xn + x + 1 which exploits the sparseness, and factored 
the trinomial x216 091 + x + 1 from Montgomery (1991), whose software was able to 
factor it in about 45 hours on a Sun 4/260, in about one and a half hours of CPU 
time. We have also verified that our factors coincide with Montgomery's. 

Roelse (1999) states a parallel running time of about 10 hours for factoring a 
random polynomial in F2 [x] of degree 300 000 by Niederreiter's algorithm, using 256 
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IBM RS6000 processors running at 67 MHz each. The largest irreducible factor of 
this polynomial has degree 126 929, and the second largest one has degree 100 948. 
Thus our irreducibility test would be of no help here. Extrapolating our running 
times for the last polynomial of degree 262 143 in Table 6, we conjecture that we 
would be able to factor Roelse's polynomial in about 20 hours, using one 400 MHz 
UltraSparc-II processor. While the linear-algebra based algorithm of Niederreiter, 
which Roelse implements, appears to be better suited for parallelization than our 
algorithm, the sequential running time of our algorithm is only O~(n2) for poly- 
nomials of degree n, in contrast to O(n3) for Niederreiter's algorithm. Moreover, 
when we do not use the irreducibility test, then the storage requirement for our 
algorithm is O(n), while Niederreiter's algorithm uses O(n2). 

We used NTL to verify for all our factorizations that the product of all found 
factors equals the input polynomial. Moreover, we checked with the irreducibility 
test of NTL that all factors of degree less than 150 000 in our factorizations are 
indeed irreducible. 
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